Morse Position of Knots and Closed Incompressible Surfaces

نویسنده

  • MAKOTO OZAWA
چکیده

In this paper, we study on knots and closed incompressible surfaces in the 3-sphere via Morse functions. We show that both of knots and closed incompressible surfaces can be isotoped into a ”related Morse position” simultaneously. As an application, we have following results. • Smallness of Montesinos tangles with length two • Classification of closed incompressible and meridionally incompressible surfaces in 2-bridge theta-curve and handcuff graph complements

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed Incompressible Surfaces in the Complements of Positive Knots

We show that any closed incompressible surface in the complement of a positive knot is algebraically non-split from the knot, positive knots cannot bound non-free incompressible Seifert surfaces and that the splittability and the primeness of positive knots and links can be seen from their positive diagrams.

متن کامل

Closed Incompressible Surfaces of Genus Two in 3-bridge Knot Complements

In this paper, we characterize closed incompressible surfaces of genus two in the complements of 3-bridge knots and links. This characterization includes that of essential 2-string tangle decompositions for 3-bridge knots and links.

متن کامل

Waist and Trunk of Knots

We introduce two numerical invariants, the waist and the trunk of knots. The waist of a closed incompressible surface in the complement of a knot is defined as the minimal intersection number of all compressing disks for the surface in the 3-sphere and the knot. Then the waist of a knot is defined as the maximal waist of all closed incompressible surfaces in the complement of the knot. On the o...

متن کامل

Knots with Infinitely Many Incompressible Seifert Surfaces

We show that a knot in S with an infinite number of incompressible Seifert surfaces contains a closed incompressible surface in its complement.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005